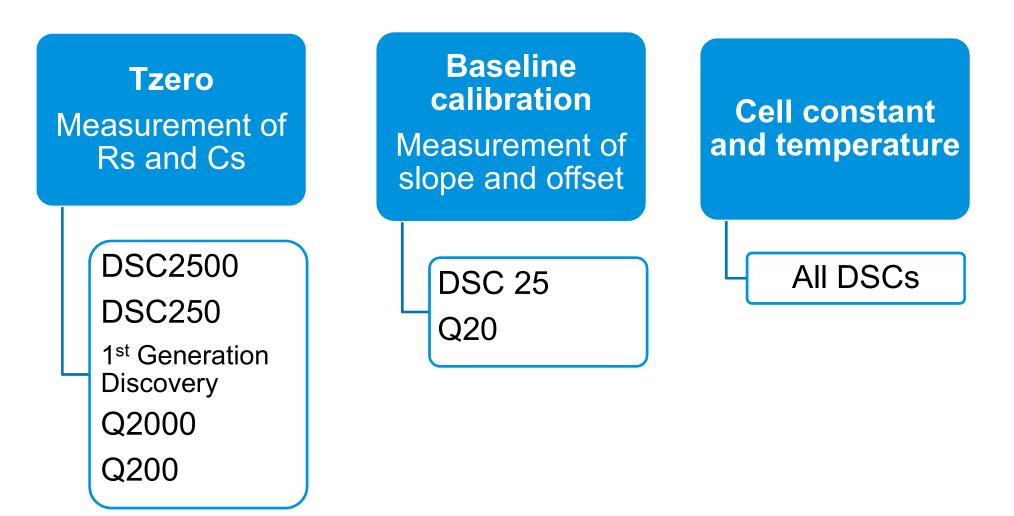
Differential Scanning Calorimetry (DSC)

Q-series Discovery DSC2500 DSC250 DSC250

©2018 TA Instruments

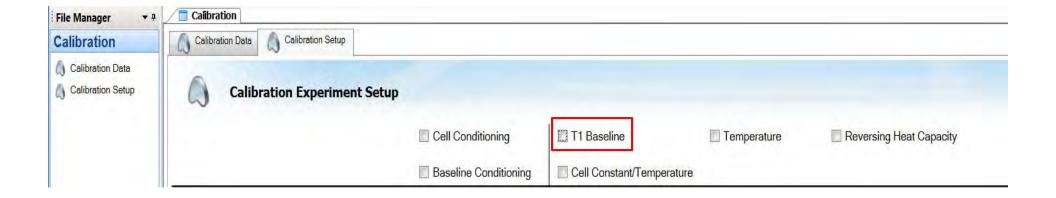
Calibration & Verification

The DSC Heat Flow Rate Equation


• A DSC measures the difference in Heat Flow Rate between a sample and inert reference as a function of time and temperature.

$$\frac{dH}{dt} = Cp \frac{dT}{dt} + f(T, t)$$

• A DSC is calibrated for the heat flow enthalpy and temperature. Baseline calibrations are performed per manufacturers recommendations.



Calibration of Specific Instrument Models

Experiment Inst	rument			
Lid Shutdown				
Controls Options	Tray			
File Manager 🔹 🕈	Calibration			
Calibration	Calibration Data			
Calibration Data Calibration Setup	Calibration Experiment Setup			
		Cell Conditioning	ro 🔲 T	emperature Reversing Heat Capacity
		Baseline Conditioning	I Constant/Temperature 🔲 D	Direct Heat Capacity

General Calibration and Verification Guidelines

Calibration

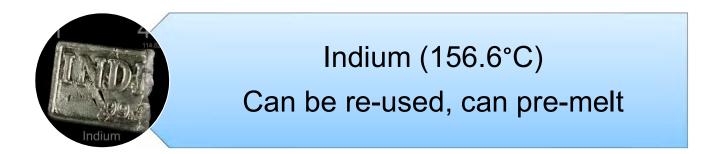
- Use Calibration Mode
- Calibrate upon installation
- Re-calibrate if does not pass verification or if instrument setup is modified (see previous slide)
- Verification
 - Determine how often to verify data
 - Run a reference material as a sample (in standard mode)
 - Compare results vs literature values
 - If results are within your tolerance system checks out and does not need re-calibration
 - If results are out of tolerance, then re-calibrate

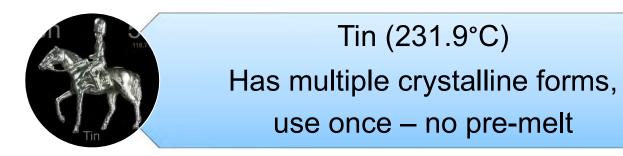
Requirements Prior to Calibration

- DSC cell must be free of contaminants
- An inert purge gas, such as nitrogen, where the flow rate is controlled to 10-50 ml/min +/- 5 ml/min
- A balance to weigh specimens and containers to at least +/- 0.1 mg. The balance should have a capacity greater than 20 mg.
- High purity reference materials (>99.99%) for calibration

Instrument Setup Factors Affecting Calibration

- Purge Gas Type
 - Re-calibrate baseline/Tzero, temperature and cell constant
 - Thermal conductivity of helium ≠ Thermal conductivity of nitrogen/air/oxygen ≠ Thermal conductivity of argon
- Cooling Accessories
 - Re-calibrate baseline/Tzero, temperature and cell constant
 - The position of the cooling head around the cell will affect the calibration of the instrument. Uninstallation and reinstallation of a cooling accessory or changing the cooling accessory warrants a complete re-calibration
- Pan Selection
 - Re-calibrate temperature and cell constant
 - It will not impact the baseline/Tzero calibration




ASTM E 967 - Standard Test Method for Temperature Calibration of DSC's

- For transition temperature, calibration is required with known reference standards.
 - Pure metals (indium, lead, etc.) typically used
 - Extrapolated onset is used as melting temperature
 - Sample is fully melted at the peak
- This test method consists of heating the calibration materials at a controlled rate in a controlled atmosphere through a region of known thermal transition.
- The heat flow into the calibration material or the difference of temperature between the calibration material and a reference is monitored and continuously recorded.
- A transition is marked by the absorption of energy by the specimen resulting in a corresponding endothermic peak in the heating curve.

ASTM E 967 - Temperature Calibration of DSC's

Zinc (419.5°C)

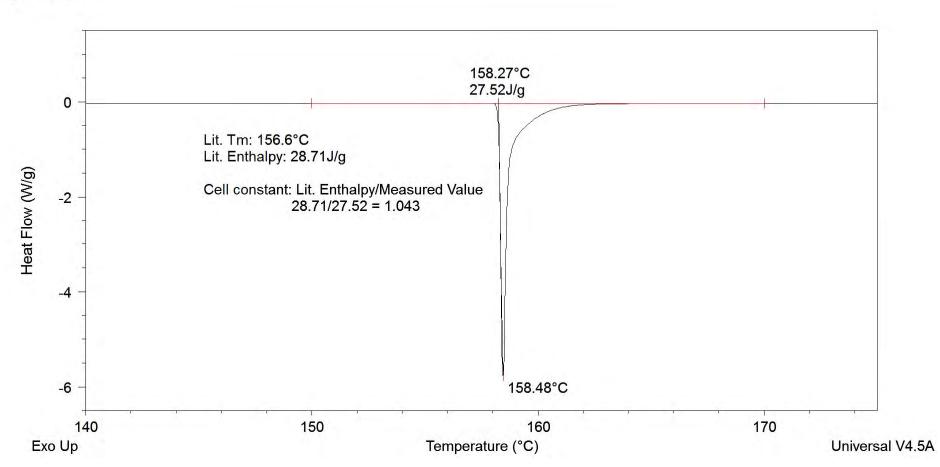
Can easily oxidize and alloy with container, use once – no pre-melt


ASTM E 968 - Standard Practice for Heat Flow (Enthalpy) Calibration of DSC's

- For enthalpy of a transition, calibration is required with known reference standards.
- This standard consists of calibrating the heat flow response of a DSC by recording the melting endotherm of a high-purity standard material as a function of time.
- The peak is then integrated (over time) to yield an area measurement proportional to the enthalpy of melting of the standard material.
- Indium is a commonly used reference standard.

Temperature and Cell Constant Calibration

 Prepare a 3-5 mg sample of indium and "pre-melt" prior to first use

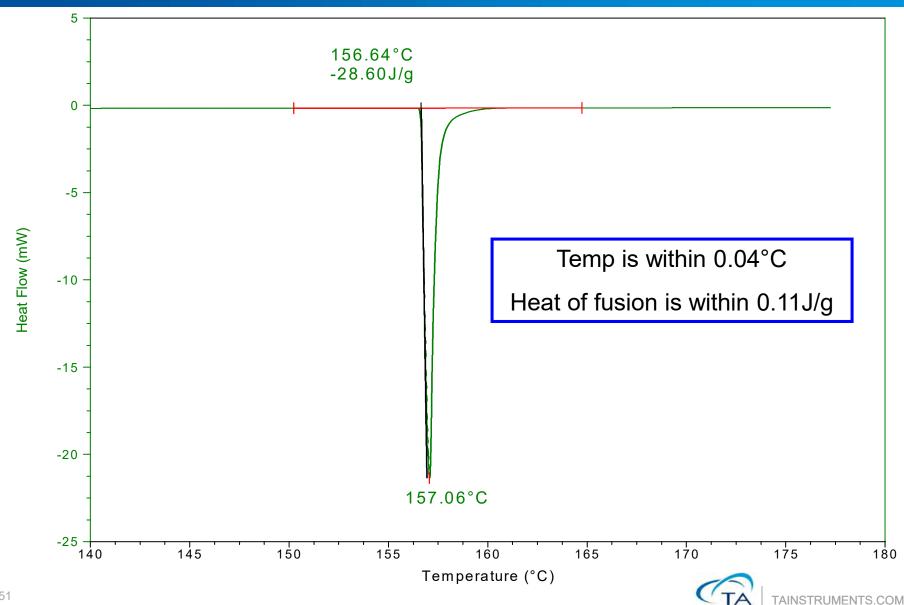


- Verify at least once a month
- Typical values for cell constant:
 - 0.9 to 1.2 (in N₂)
 - Helium will typically give higher values for the cell constant

Calorimetric and Temperature Calibration (Un-calibrated Data – No Correction Factors Applied)

Sample: Indium

Indium melt from 155°C to 157°C



Verifying Cell Constant & Temperature

- Run Indium as a sample (i.e. in standard mode not calibration mode)
- Analyze melt and record melt onset & heat of fusion
- Compare to known values
 - Melting of In 156.6°C
 - Heat of Fusion 28.71J/g

Verifying Cell Constant & Temperature

Reference Standards for Calibration

- Enthalpy (cell constant)
 - Benzoic acid (147.3 J/g) Tm = 123°C
 - Urea (241.8 J/g) Tm = 133°C
 - Indium (28.71 J/g) Tm = 156.6°C
 - Anthracene (161.9 J/g) Tm = 216°C

* GEFTA recommended *Thermochim. Acta*, 219 (**1993**) 333.

- # ITS 90 Fixed Point
- E Zone refined organic compound (sublimes)

- Temperature
 - Cyclopentane* -150.77°C
 - Cyclopentane* -135.09°C
 - Cyclopentane* -93.43°C
 - Cyclohexane # -83°C
 - Water # 0°C
 - Gallium # 29.76°C
 - Phenyl Ether # 30°C
 - p-Nitrotoluene E 51.45°C
 - Naphthalene E 80.25°C
 - Indium # 156.60°C
 - Tin # 231.95°C
 - Lead* 327.46°C
 - Zinc # 419.53°C

TAINSTRUMENTS.COM

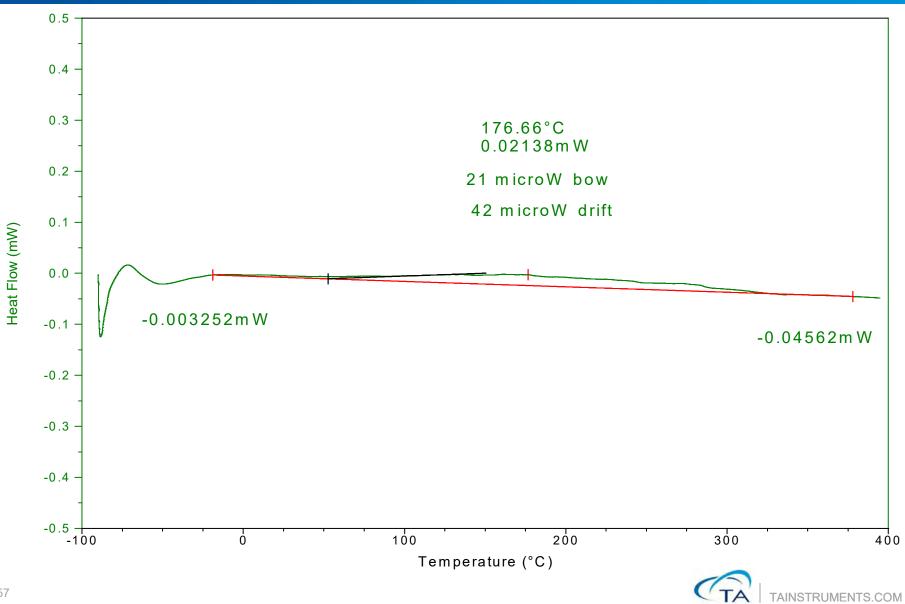
Traceable Calibration Materials

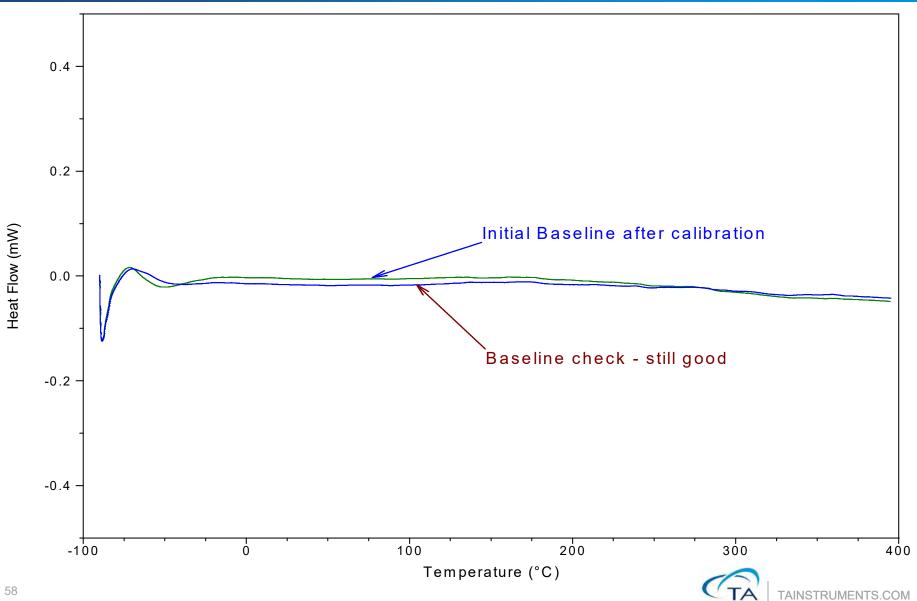
- NIST DSC calibration materials:
 - SRM 2232 Indium, Tm = 156.5985°C
 - SRM 2220 Tin, Tm = 231.95°C
 - SRM 2222 Biphenyl, Tm = 69.41°C
 - SRM 2225 Mercury, Tm = -38.70°C
- NIST: Gaithersburg, MD 20899-0001
 - Phone: 301-975-6776
 - Fax: 301-948-3730
 - Email: SRMINFO@nist.gov
 - Website: http://ts.nist.gov/srm

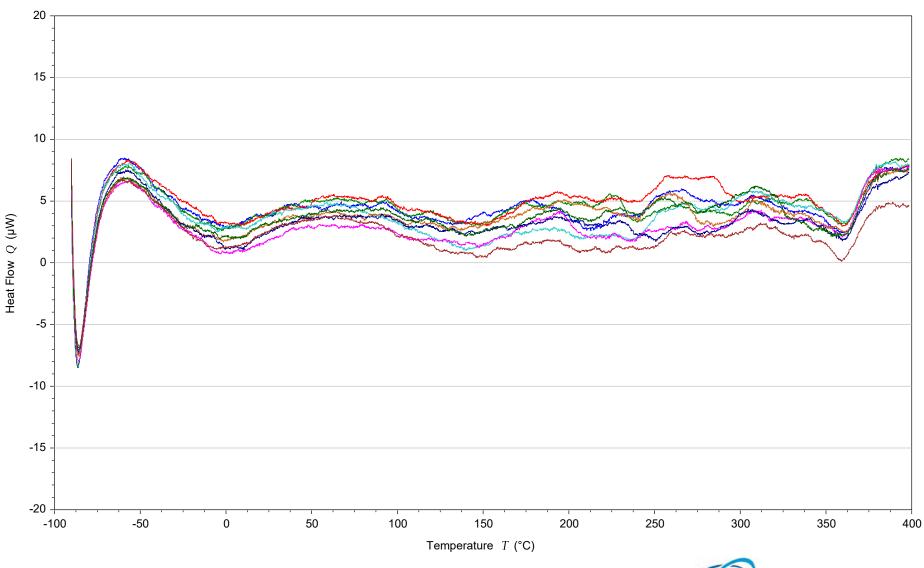
Traceable Calibration Materials

- LGC DSC Calibration Materials:
 - LGC2601: Indium (TA p/n: 915060-901)
 - LGC2608: Lead
 - LGC2609: Tin
 - LGC2611: Zinc
- Laboratory of the Government Chemist, UK
 - Phone: 44 (0) 181 943 7565
 - Fax: 44 (0) 181 943 7554
 - Email: orm@lgc.co.uk

- Run Empty cell (no pans), -90°C to 400°C (w/ RCS) at 20°C/min
 - Experiment is run in the standard mode
 - Plot mW vs. temperature on a 1mW scale
 - Should look fairly flat on this scale
 - Should be around zero heat flow
 - Measure drift and compare to instrument specifications.
 - Verify performance periodically




- Importance of a flat baseline:
 - Detecting very weak transitions
 - Accurate integration of enthalpy
 - Kinetics, partial area analysis, extent of reactions
 - Initial crystallinity


Verifying Baseline

Verifying Baseline

Empty Cell Baseline at 20 °C/min – DSC2500

Experimental Design: Instrument Set Up

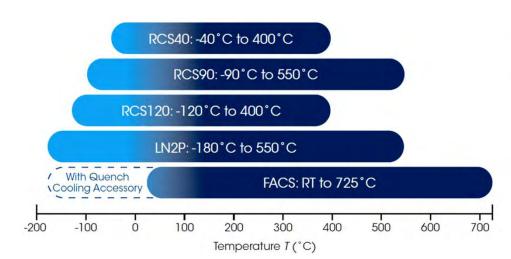
Instrument Hardware and Gas Selection Considerations

Temperature Range Dependent On The Cooling System •Finned Air Cooling System (FACS): Ambient to 725°C

- •Quench Cooling Accessory (QCA): -180°C to 400°C
- Liquid Nitrogen Cooling System (LN2P): -180°C to 550°C
- •RCS120: -120°C to 400°C
- •RCS90: -90°C to 550°C
- •RCS40: -40°C to 400°C

Purge Gas Selection

- Nitrogen
- •inert, inexpensive and readily available
- flow rate of 50ml/min
- Helium
- •a high thermal conductivity gas which improves response time and cooling capabilities
- •the recommended purge gas when using the LN2 accessory at temperatures below -100°C
- •flow rates of 10-25ml/min are typically used; cell constant affected by flow rate
- Air/Oxygen
- •used when studying oxidative stability of materials



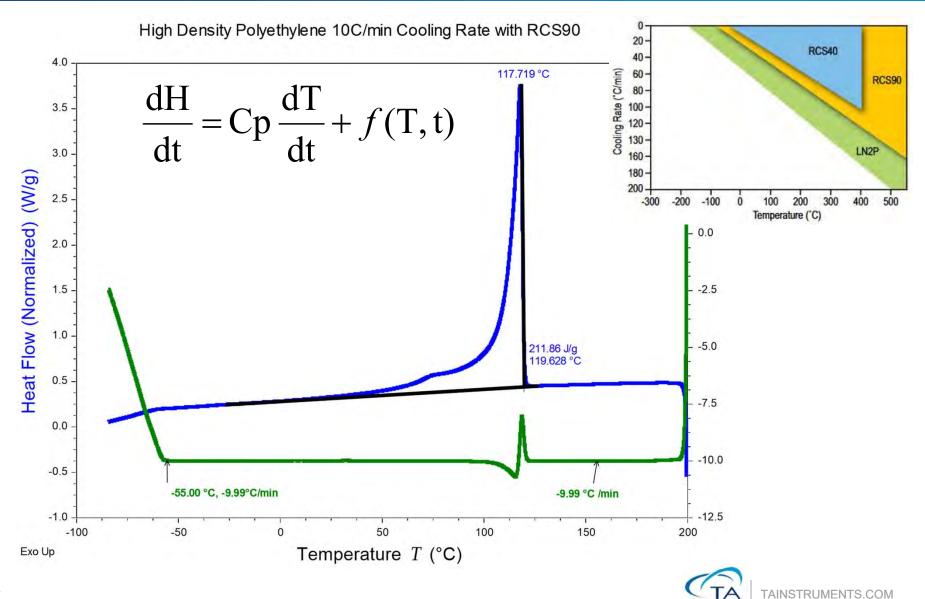
- Sample Press and Pan Selection
- •Aluminum: max. temperature of 600°C
- •Gold
- Copper
- Graphite, Alumina
- •Platinum
- Stainless Steel

Cooling Accessories

- Finned Air Cooling System (FACS): Ambient to 725°C
- Quench Cooling Accessory (QCA): -180°C to 550°C *
- Liquid Nitrogen Cooling System (LNCS): -180°C to 550°C
- RCS120: -120 °C to 400 °C
- RCS90: -90°C to 550°C
- RCS40: -40°C to 400°C

Performance of the Cooling Accessories

Controlled Rate	To Lower Temperature
100°C/min	300°C
50°C/min	120°C
20°C/min	-20°C
10°C/min	-50°C
5°C/min	-75°C
2°C/min	-90°C


Controlled Rate	To Lower Temperature
65°C/min	250°C
50°C/min	175°C
20°C/min	40°C
10°C/min	0°C
5°C/min	-15°C
2°C/min	-40°C

Controlled Rate	To Lower Temperature
100°C/min	200°C
50°C/min	0°C
20°C/min	-100°C
10°C/min	-150°C
5°C/min	-165°C
2°C/min	-180°C

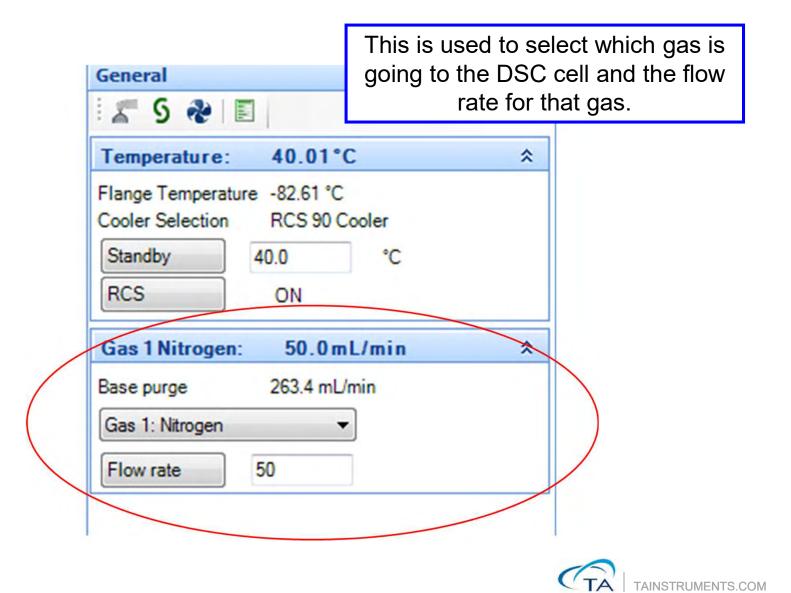
* Performance may vary slightly, depending on laboratory conditions.

Effect of Cooling Rate on Heat Flow

Selecting the Cooler – Discovery DSC

Application		ad to coloct the cooler t	
Discovery DSC	Cooler Settings	ed to select the cooler ty	/\
Information			
General	Cooler Selection		
Cooler	Cooler Selection	RCS 90 Cooler 🗸	
Auto Sampler Temperature Cal Heat Capacity	Activate secondary purge when lid is opened	(R Finned Cooler Quench Cooler LN2P Cooler RCS 40 Cooler	
	Between Runs	RCS 90 Cooler	
	Leave Cooler On		
	Autofill LN2P if below	60.0 %	

Selecting the Cooler – Q-series



Selecting the Purge Gas – Discovery DSC

Experiment	wery DSC	Global Settings		
	ieral	Global Options		
New	1 Martin Carlos	Transition Direction:	Exotherm Down Exotherm Up	
Auto	Sampler	Heat Flow Selection	Heat Flow T4P (mW)	•
Open Ten	nperature Cal	Data Sampling Interval	0.1	s/pt
	t Capacity	Lid Type	Standard Temperature Lid	•
Save		Enable Sequence without	Using Autosampler	
		Gas Connections		
Save As.		Gas 1	Nitrogen	•
Save As		Gas 2	Nitrogen	•
		Stop the experiment wher	Argon	
Save All		_	Helium	
		Instrument Database Backup (N	Oxygen	04, 2015)
Export 🕨		Backup Daily	Around 1:00 AM	Backup Now
		Backup Folder C:\ProgramD	ata\TA Instruments\TRIOS\ThermalDBback	kups
Print >		Prohibit any scheduled ba	ackups on this computer	View Log Restore >
Close				
00000				OK Cancel

Setting the Purge Gas Flow Rate – Discovery DSC

Selecting the Purge Gas – Q-series DSC

	Ilser Preferences	Instrument Preferences	
uence Bun 1	Run 1: Stan Instrument Preferences Off Summary Data Transfer File Utility Procedu Instrument Setup Mode Register as the Master Controller Image: Sample Print Setup Sample Print Setup Pan No. 1 V Pan Mass 55.230 mg (Sample) Comments Sample Sample	Instrument Preferences X MFC Purge LCD Signals Touch Screen DSC Cooler Auto Sampler Gas #1 Nitrogen Image: Cooler Image: Cooler Auto Sampler Image: Cooler Gas #2 Nitrogen Image: Cooler Image: Cooler Image: Cooler Image: Cooler Image: Cooler Image: Cooler Image: Cooler Image: Cooler Image: Cooler Image: Cooler Gas #2 Nitrogen Image: Cooler Image: Cooler	
	Archive Enable Autoanalyze Analysis Macro	ОК Сапсе! <u>Арріу</u> Нер 2.00 1.80- 1.60- 1.60- 1.40- 1.40- 1.40- 0.431 (С. 8432 2.00- 1.40- 1.40- 1.40-	
*	This is used to specify the type connected to Gas #1 and Gas #	e of gas	

Setting the Purge Gas Flow Rate – Q-series DSC

🖁 QSeries - [Q1000-	0157 - DSC Q1000@Apps Lab]		_ 8 ×
Control Experimen	ntal Calibration Tools View Window Help Engineering		_ <u>8</u> ×
	i d) 🖪 🔄 🗖 Ö 🖸 🔛 🖾 🕄 🗐 🗒 👗 🤾	🔆 🔤	
🔺 🖏 💼	Run 1: Standby Temp: 27.50°C Store: Off Gas: 1 Event: On		
C C C C C C C C C C C C C C C C C C C	Summary Procedure Nges Notes Operator Pan Type Aluminum	Signal Method Time Segment Time Remaining Run Time Temperature Heat Flow Heat Capacity Sample Purge Flow Set Point Temp Heater Power Flange Temperature Heater Temperature	Value 0.00 min 0 min 0 min 27.50 °C 0.037 mW 0.000 mJ/*C 50.01 mL/min 27.50 °C 38.568 W -91.59 °C 28.15 °C
	Mass Flow Control Settings Sample #1 • Nitrogen Flow Rate 50 mL/min	# Bunning Segment 1 Image: Equilibrate at 2 Image: Frame 10,000	
B Dun Gas	This is used to select which gas is going to the DSC cell and the flow rate for that gas.	4.0- 2.0- () 0.0-) 0.0- () 0.0-) 0.0- ()	
Beo Beo Bri ↑ ↓ D eady	01 28.00 min. Append Apply Cancel Help	-6.0 26.0 27.	0 28.0 29.0 30.0 31.0 Temperature (°C) Stand by Standard Seg 0 in Run 1 13:26:45

Recommended Purge Gas Flow Rates

<u>Purge Port</u>

All TA DSC's 50 ml/min (N_2) or 25 ml/min (He)

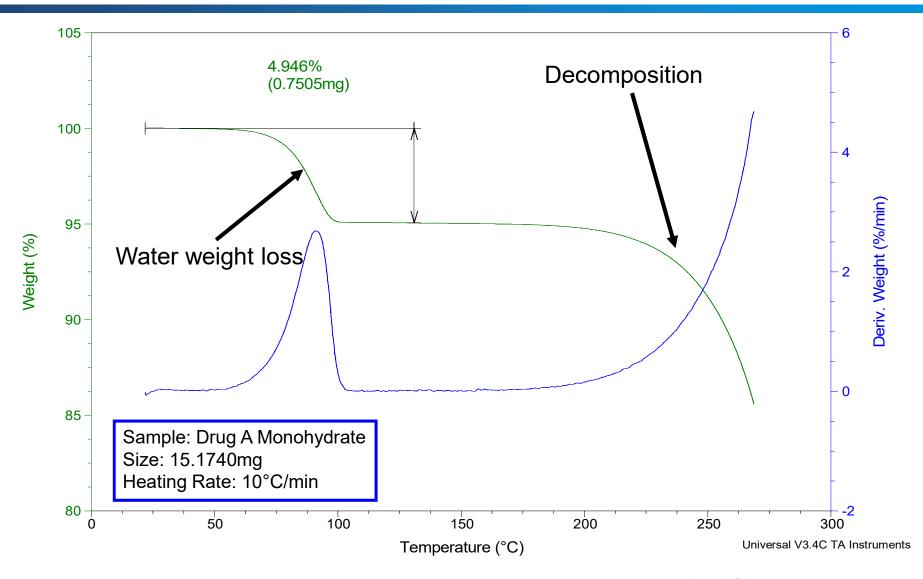
- If purge gas is too slow possible moisture accumulation & early aging of the cell
- If purge gas is too fast excessive noise

Module

Experimental design: Sample Preparation and Considerations

TGA for DSC Experimental Design

- Thermogravimetric Analysis (TGA) measures weight loss or gain as a function of temperature, time and atmosphere.
- General applications of TGA include:
 - thermal stability
 - residual solvent, out gassing, moisture sorption/desorption
 - filler/fiber content
 - weight loss on cure
- TGA measurements are extremely useful in selecting experimental conditions for DSC experiments and for interpreting results.



Selecting Optimum Experimental Conditions

- If possible, run a TGA experiment before beginning DSC tests on new materials
- Heat approximately 10mg sample in the TGA at 10°C/min to determine:
 - Volatile content
 - Unbound water or solvent is usually lost over a broader temperature range at a lower temperature than a hydrate/solvate
 - Decomposition temperature
 - DSC results are of little value once the sample has lost 5% weight due to decomposition (not desolvation)
 - Decomposition is a kinetic process (time & temperature dependent). The measured decomposition temperature will shift to lower temperatures at slower heat rates

Typical TGA data: TGA of Drug A Monohydrate

Selecting Optimum Experimental Conditions

- Use TGA data to help select DSC experimental conditions
 - Standard (non-hermetic) vs. Hermetic (sealed) pans
 - Use hermetic pan if sample loses approximately 0.5% weight or more.
 - Use hermetic pan with pin hole lids if sample loses volatiles such as water
 - Maximum Temperature
 - Excessive decomposition will contaminate the DSC cell between runs
 - When comparing samples, always use the same experimental conditions

DSC Pan Selection

- High thermal conductivity aluminum, gold, copper, platinum
- Inert alodined aluminum, ceramic, graphite
- Flatness of the pan for optimal thermal contact
- Standard, non-hermetic vs. hermetic sealing
- Capacity/sample volume
- Temperature range

Sample Pans

- Type of pan depends on:
 - Sample form
 - Volatilization
 - Temperature range
- Use lightest, flattest pan possible
- Always use reference pan of the same type as sample pan

Tzero Press (P/N 901600.901)

Tzero Press kit includes die sets for:

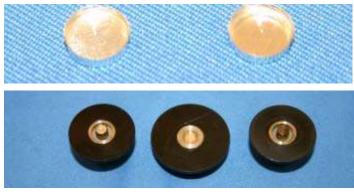
- Tzero Pans / Tzero Lids and Tzero Low-Mass Pans / Tzero Lids (Black)
- 2. Tzero Pans / Tzero Hermetic Lids (Blue)
- 3. Standard Aluminum Pans / Lids (Green)
- 4. Standard Hermetic Pans / Lids (White)

The kit also includes one box each of Tzero Pans (100) and Tzero Lids (100).

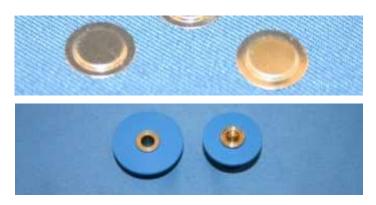
TA Instruments Tzero Pans (Aluminum)

Tzero Pan

Tzero Low-Mass Pan



- The Tzero pan has been engineered to have a perfectly flat bottom and not to deform during crimping. This ensures the optimal contact between pan and sensor, minimizing the contact resistance and improving resolution.
- The Tzero Pan can be configured for non-hermetic or hermetic use. P/N 901683.901 Tzero Pans (pkg. of 100)
- The Tzero Low-Mass Pan is designed for the highest sensitivity when sample mass is limited. P/N 901670.901 Tzero Low-Mass Pans (pkg. of 100). Can only be used with the non-hermetic Tzero lid.


TA Instruments Tzero Pans

Tzero Lid

 Tzero Lid (P/N: 901671.901) -Lightweight aluminum lids for use in sample encapsulation with the Tzero Pans and the Tzero Low-Mass Pans. The seal is not hermetic.

Tzero Hermetic Lid

 Tzero Hermetic Lid (P/N: 901684.901) (pkg. of 100) and P/N: 901685.901 Tzero Hermetic Pinhole Lid (75 micron diameter pinhole) (pkg. of 50). Used only with the Tzero pan, not the low mass Tzero pan

Standard Series DSC Aluminum Pans

• Part numbers for the pans and lid

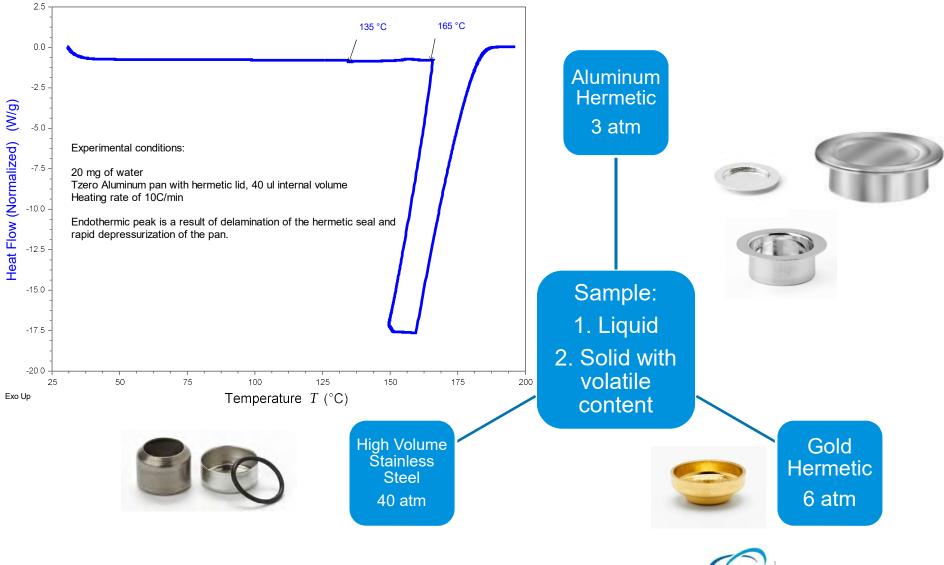
- 900760.901 Classic Aluminum Pans (pkg. of 200) (higher sidewall compared to the standard aluminum sample pans to accommodate larger samples)

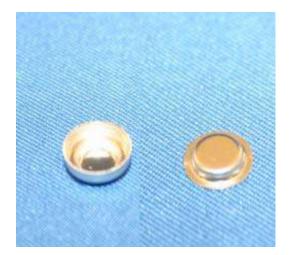
- 900786.901 Aluminum Sample Pans (pkg. of 200)
- 900779.901 Aluminum Lids (pkg. of 200)
- Pan & lid weighs ~23mg, bottom of pan is flat
- use up to 600°C maximum
- Used for solid non-volatile samples
- Always use lid (see exceptions)
 - Lid improves thermal contact
 - Keeps sample from moving
- Exceptions to using a lid
 - Running oxidative experiment
 - Running PCA experiment

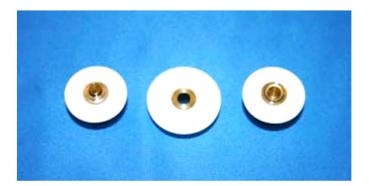
Standard Series DSC Other Pans (Non Hermetic)

- Standard pans are available in:
 - Gold (p/n 900866.901 pan, p/n 900868.901 lid):up to 725°C
 - Graphite (p/n 900874.901 pan, p/n 900873.901 lid): up to 725°C (in N₂)
- Standard Pans with no lids available
 - Platinum (p/n 900578.901): up to 725°C
 - Copper (p/n 900867.901) : up to 725°C

Sample Shape


- Keep sample thin
- Cover as much the bottom of pan as possible

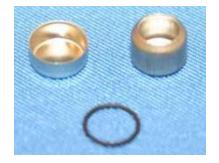

Hermetic DSC Pans



TAINSTRUMENTS.COM

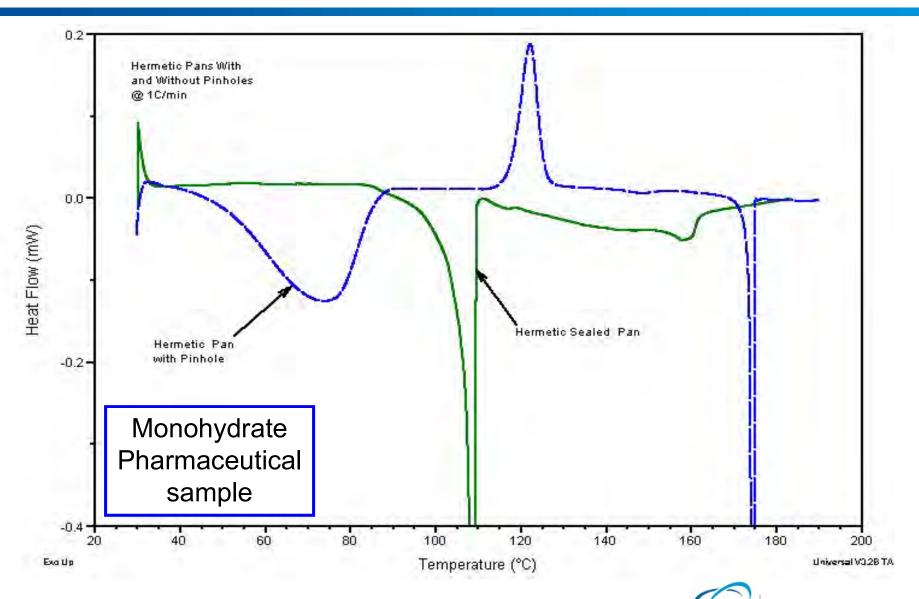
Standard Series Aluminum Hermetic Pans

- Part numbers for the pans and lid
 - 900793.901 Aluminum Sample Pans, Hermetic (pkg. of 200)
 - 900794.901 Aluminum Lids, Hermetic (pkg. of 200)
 - 900860.901 Hermetic Lids with Pinhole (pkg. of 50)
- Pan & Lid weigh ~55mg, bottom of pan is not as flat as standard pans
- Used for liquid samples and samples with volatiles
- Always use lid (same exceptions as before)
- After sealing pans, the lid should form a dome



Hermetic Pans Summary

- Hermetic Pans are available in:
 - Aluminum: <600°C; <3 atm (300 kPa gauge)</p>
 - Alodined Aluminum: <200°C; <3 atm (300 kPa gauge)</p>
 - Gold: <725°C; <6 atm (600 kPa gauge)</p>
- Specialized Sealed Pans
 - High Volume: 100µL; <250°C; 37 atm (575 psi)</p>
 - P/N 900825.901


- High Pressure: 35µL; <300°C; 100 atm (1450 psi)</p>
- P/N 900808.901

Note: 3 atm is approximately 44 psi

It Can Matter What Pan You Use

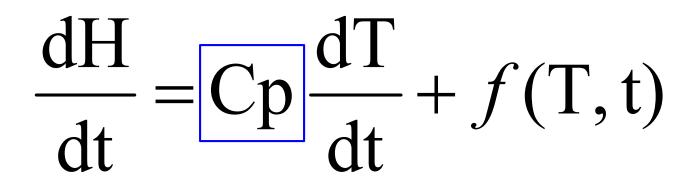
TAINSTRUMENTS.COM

What if Sample Spills out of the Pan? Keeping the DSC Cell Clean

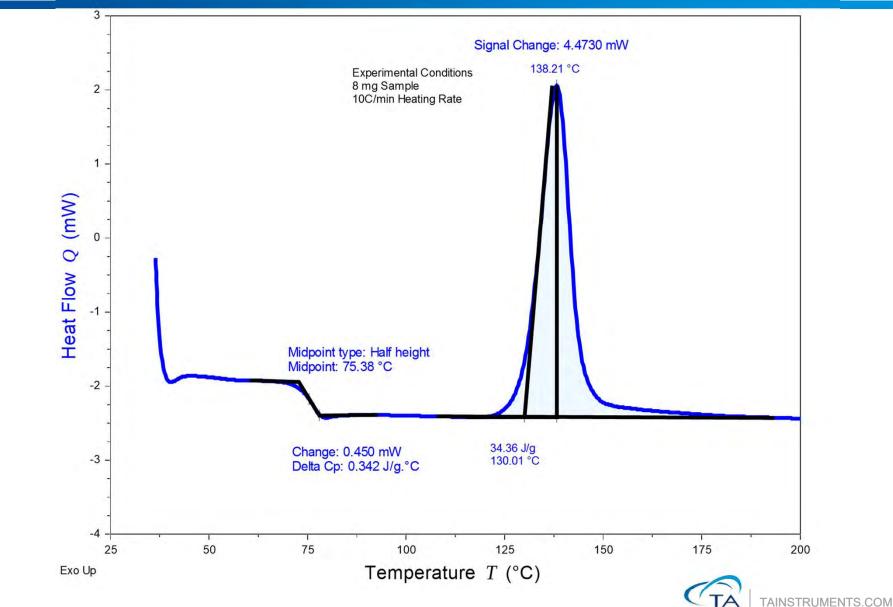
- One of the first steps to ensuring good data is to keep the DSC cell clean
- How do DSC cells get dirty?
 - Decomposing samples during DSC runs
 - Samples spilling out of the pan
 - Transfer from bottom of pan to sensor

Cleaning the Cell

- Use solvent slightly damp swab with an appropriate solvent
 - Heat cell to 200°C for 10 min to drive off any remaining solvent
- If the cell is still dirty
 - Clean w/ brush
 - Be careful with the Tzero[™] thermocouple
 - Fibers in cell from cleaning brush need to be removed


Cleaning Cell: Bake Out Procedure

- Bake out
 - Should be used as a last resort if none of the previous steps are effective
 - Involves Air purge and/or an open lid
 - Heat at 20°C/min to appropriate temp (max of 550°C on Q series, max. 400°C in Discovery)
 - Do NOT hold Isothermal at the upper temperature
 - Cool back to room temp & brush cell again
- Irrespective of the cleaning method used, always verify the baseline at the end of the cleaning procedure, and recalibrate the DSC if required
- Check out the TA Tech tip video on cleaning the DSC cell: <u>https://www.youtube.com/watch?v=cclJXrbUICA</u>


Sample Preparation: Optimization of Sample Mass

- Sample Preparation
 - Weight of 5-10 mg for polymers; 10-15 mg for cross-linked thermosets; 3-5 mg for metal or chemical melting
 - Goal is to achieve a change of 0.1-10mW heat flow in going through the transition

Heat Flow Change During a Transition

